
Keyless Signatures’ Infrastructure:
How to Build Global Distributed Hash-Trees

Ahto Buldas1,2, Andres Kroonmaa1, and Risto Laanoja1,2

1 GuardTime AS, Tammsaare tee 60, 11316 Tallinn, Estonia.
2 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia.

Abstract. Keyless Signatures Infrastructure (KSI) is a globally dis-
tributed system for providing time-stamping and server-supported digi-
tal signature services. Global per-second hash trees are created and their
root hash values published. We discuss some service quality issues that
arise in practical implementation of the service and present solutions for
avoiding single points of failure and guaranteeing a service with reason-
able and stable delay. Guardtime AS has been operating a KSI Infras-
tructure for 5 years. We summarize how the KSI Infrastructure is built,
and the lessons learned during the operational period of the service.

1 Introduction

Keyless signatures are an alternative solution to traditional PKI signatures. The
word keyless does not mean that no cryptographic keys are used during the
signature creation. Keys are still necessary for authentication, but the signatures
can be reliably verified without assuming continued secrecy of the keys. Keyless
signatures are not vulnerable to key compromise and hence provide a solution to
the long-term validity of digital signatures. The traditional PKI signatures may
be protected by timestamps, but as long as the time-stamping technology itself
is PKI-based, the problem of key compromise is still not solved completely.

Keyless signatures are a solution to this problem. In a keyless signature
system, the functions of signer identification and of evidence integrity pro-
tection are separated and delegated to cryptographic tools suitable for those
functions. For example, signer identification may still be done by using asym-
metric cryptography but the integrity of the signature is protected by using
keyless cryptography—the so-called one-way collision-free hash functions, which
are public standard transformations that do not involve any secret keys.

Keyless signatures are implemented in practice as multi-signatures, i.e. many
documents are signed at a time. The signing process involves the steps of:

1. Hashing : The documents to be signed are hashed and the hash values are
used to represent the documents in the rest of the process.

2. Aggregation: A global temporary per-round hash tree is created to represent
all documents signed during the round. The duration of rounds may vary
but is set to one second in the working solution.

3. Publication: The root hash values of the per-round aggregation trees are
collected into a perpetual hash tree (so-called hash calendar) and the root
hash value of that tree is published as a trust anchor.

To use such signatures in practice, one needs a suitable Keyless Signatures’ In-
frastructure (KSI) analogous to PKI for traditional signature solutions. Such an
infrastructure consists of a hierarchy of aggregation servers that, in co-operation,
create the per-round global hash trees. First layer aggregation servers, so-called
gateways, are responsible of collecting requests directly from clients, and every
aggregation server receives requests from a set of lower level servers, hashes them
together into a hash tree, and sends the root hash value of the tree as a request
to higher-level servers. The server then waits for the response from a higher-level
server and by combining the received response with suitable hash chains from
its own hash tree responds to lower-level servers.

In this paper, we discuss some service quality and availability issues that arise
when maintaining this tree in practice and describe solutions to overcome them.
The implementation avoids single points of failure and guarantees reasonable and
stable service latency. Guardtime AS has been operating a KSI Infrastructure for
5 years—sufficiently long time to draw some conclusions about the availability,
scalability and practical lessons learned during the operational phase. This paper
summarizes how the KSI Infrastructure is built, its main components and the
operational principles. We provide a brief overview of the security aspects of the
service, including design decisions that minimize possible risks.

2 Hash Trees and Hash Calendars

Hash Trees: Hash-tree aggregation as a technique was first proposed by Merkle
[6] and first used for digital time-stamping by Haber et al [5]. Hash-tree time-
stamping uses a one-way hash function to convert a list of documents into a fixed
length digest that is associated with time. User sends a hash of a document to
the service and receives a signature token—a proof that the data existed at the
given time and that the request was received through a specific access point. All
received requests are aggregated together into a large hash tree; and the top of
the tree is fixed and retained for each second (Fig. 1). Signature tokens contain
data for reconstructing a path through the hash tree—starting from a signed
hash value (a leaf) to the top hash value. For example, to verify a token y in the
place of x1 (Fig. 1), we first concatenate y with x1 (part of the signature token)
and compute a hash value y2 = h(x1 | y) that is used as the input of the next
hash step, until we reach the top hash value, i.e. y3 = h(y2 | x34) in the example
case. If y3 = xtop then it is safe to believe that y was in the original hash tree.

Hash Calendar: Root hash values for each second are linked together, into a
globally unique hash tree called a hash calendar, so that new leaves are added
only to one side of the tree. Time value is encoded as the shape of the calendar
the modification of which would be evident to other users. The top hash of the
calendar is periodically published in widely witnessed media.

y

xtop = h(x12|x34)

x12 = h(x1|x2) x34 = h(x3|x4)

x1 x2 x3 x4

y3 = h(y2|x34)

y2 = h(x1|y)

x34

x1

Fig. 1. Computation of a hash tree (left), and verification of y at the position of x2.

There is deterministic algorithm to compute top of the linking hash three,
giving us distinct top level hash value at each second. Also there is an algorithm
to extract time value from the shape of the linking hash tree for each second,
giving us a hard-to-modify time value for each issued token.

Security Against Back-Dating: Security against back-dating means that ma-
licious servers must be unable to add new fresh requests to already published
hash trees. It has been shown [4, 3, 2] that if the hash function is secure in or-
dinary terms (one-wayness, collision-resistance, etc.) and the aggregation tree is
of limited size, then the scheme is indeed secure against back-dating.

3 System Architecture

An Application (Fig. 2) computes a hash of the document that is going to be
signed and sends a request to a Gateway—a server that delivers the service
to end-users. Gateway aggregates the requests received during an aggregation
cycle and sends its top hash value as a request to the upstream aggregation
cluster. The request is aggregated through multiple layers of Aggregator servers,
and the globally unique top hash value is created by the Core cluster. The
response (that consists of verifiable hash tree paths) is sent immediately back
through the aggregation layers. The top hash values for each second are collected
to Calendar Archive and distributed through the Calendar Cache layer to the
Extender service, usually co-located with the Gateway host. Client applications
use the Extender service for the verification of signatures.

Aggregation Network: An aggregator is a system component that builds hash
trees from all incoming requests and passes root hash values to upstream sys-
tem components. Aggregators work in rounds of equal duration. The requests
received during a round are aggregated into the same hash tree. After receiving a
response from an upstream component, an aggregator immediately delivers the
response to all child aggregators together with hash paths of its own tree. Sub-
sequent responses from upstream components for the same round are ignored.
The aggregation tree is split to four layers, and an aggregation infrastructure
was built so that the top layer is close to the Core cluster (see the next section),

Aggregator

Aggregator

Aggregator

Gateway Extender

Application

Calendar
Cache

Calendar
Archive

Core cluster

Aggregator
Aggregator

Aggregator
Customers

Customers
Customers

Customers
Customers

Aggregator Aggregator

Aggregator Aggregator

Top Level
Aggregator

...

Aggregator
...

Fig. 2. High-level system architecture and the aggregation network.

two intermediate layers provide geographic scale. The bottom layer is bundled
with Gateways and hosted typically at the end user premises. Each downstream
client or aggregator has its reserved spot in the hash tree—this allows to prove
which server was involved in the creation of a particular signature token.

The aggregation tree scales well. In order to double the system capacity we have
to add only one hash value to the signature token. Current hash-tree depth is
fixed at 50 steps, giving us theoretical maximum capacity of 250 ≈ 1015 signa-
tures per second. This initial configuration is believed to cover possible signature
needs for the foreseeable future. Each gateway and aggregation server generates
constant upstream network traffic which does not depend on the actual load.
This isolates the customers, does not leak information about the actual service
usage, and provides reasonable denial-of-service attack protection. Also in order
to scale up the service it is easy to add resources with linear increase in capacity.

Core Cluster consists of top-level aggregators and is a distributed synchronized
machine responsible for producing the hash calendar and propagate it through
the aggregation network. The root hash values of the calendar are archived and
distributed to verification servers, through guaranteed integrity archiving and
“dumb” caching layers. The roots of intermediate aggregation trees are only
stored in relevant signature tokens. Top level aggregators guarantee that the
time value of the calendar corresponds to the UTC time. Gateways fetch their
copies of the Calendar from the cache servers using the HTTP protocol. Local
copy of the Calendar data is used for signature token verification.

Gateway: Gateway works as a protocol adapter, accepting requests in applica-
tion specific formats (RFC3161, OpenKSI) and forwarding them to designated
Aggregator(s). In practice, first level of aggregation happens already at a Gate-
way host, giving us low and predictable communication bandwidth between the
Aggregators and Gateway. Gateways host a Verifier (or Extender)— a signature
verification assistant. Extender has a fresh copy of the calendar, and it builds
hash chains from signed hash values to the published hash values. This cannot
be done immediately after signing, because part of the calendar is not yet known
at the signing time. The hash chains created by the Extender and validated in
client APIs. Client applications may store the verified token with full information
for re-creation of the hash-chain by creating so-called “extended” token.

4 Availability and Service Quality

To increase the availability of the service, single points of failure must be avoided
and we have to use redundancy everywhere in the system. Every aggregation
server is replaced with a geographically dispersed cluster of servers that work in
parallel, so that lower-level servers send requests to the whole cluster and will
use the first received valid reply. If the availability coefficient of a single server is
assumed to be 0.99 (approximate downtime is 3.5 days per year), then a cluster
with two servers has availability about 0.9999, assuming total independence of
downtime events. The clusters can be enlarged without downtime.

The response time of the service may depend on several characteristics of the
network and if no measures are taken may vary considerably. Below we describe
how we eliminated the “long tail” of the service response time.

Simplified Approach The aggregation network is redundant, i.e. it has a clus-
ter of m aggregators instead of one. Every aggregator has a certain aggregation
period d (in time units). The larger the aggregation period is, the larger service
delay it creates, i.e. a request that receives at random time will be aggregated
(i.e. the Merkle tree built, the root hash calculated and sent to the parent clus-
ter) approximately after d/2 units of time. This means that every aggregator in
the path from a client to the core-cluster adds d/2 time units of service delay.

If an aggregation round begins at 0 and ends at d, then a request that arrives
at t (in [0 . . . d]) will have service delay d− t, i.e. the larger t is, the smaller will
be service delay. The requests that arrive later (just before the round is closed)
have smaller service delays.

The main idea is to adjust the round schedules of the aggregators in the same
cluster so that the average delay of requests will be minimal. For example, if we
have two aggregators in the cluster both with round length d (in time units)
and the round of the second aggregator begins at time d/2 (instead of 0), then
(as every request is sent to both aggregators), the average service delay is d/4
instead of d/2. This is because the delay for a request received at t is now the

following function δ(t) = d
2 (1 + b2t/dc) − t =

{
d/2− t if t ∈ [0 . . . d/2]
d− t if t ∈ [d/2 . . . d]

and

the average value of this function in [0 . . . d] is d/4. In general, if we have m
aggregators in the cluster, and the round of the i-th aggregator in the cluster
begins at time i/m, then δ(t) = d

m (1 + bmt/dc)− t and the average delay is d
2m .

This method reduce the service delay by interleaving the aggregation rounds
in a cluster. The simplified approach is useful if the delay is almost completely
random, i.e. has a large standard deviation comparable to the duration of ag-
gregation rounds. Such extreme conditions are very rare in practice.

Practical Approach A network delay between a child aggregator C and a
parent aggregator P consists of several components:

– Propagation delay caused by the basic fact of physics and which depends on
the length of wires between C and P . This delay cannot be eliminated.

– Serialization delay caused by global cloud of network routers that choose
the paths in the network that are used to send data from C to P .

– Jitter. Mostly caused by varying utilization which creates processing queues
and causes retransmissions.

All these component-delays create a probability distribution that is not uniform
but a rather sharp bell-curve. For example, if we know that 95 per cent of the
requests (of C to P) have delays between 25 − 40ms (milliseconds), then we
can adjust the round schedules of C and P , so that their rounds (if they are of
equal duration d) begin at t and t+ 40ms, respectively. This means that 95 per
cent of the requests send by P to C have additional delay less than 40ms. Note
that in practice, the delay is much smaller than d/m, where m is the number of
aggregators in a cluster and d is the aggregation period.

Message flow between the aggregation layers is depicted in Fig. 3. The vertical
axis represents layers of the aggregation tree, and the horizontal axis represents
time-flow in seconds. Left drawing illustrates the unsynchronized case with two
requests, first one being worst case and second one being best case. As request
travels upstream it waits for end of the aggregation round at each layer, and first
requests narrowly misses the end of 1-second top level aggregation cycle. Second
requests arrives just before the end and response for both requests arrives at the
same time. Right drawing depicts the ideal case with synchronized layers.

5 Practical Results

Test Setup: The test was performed during the service expansion to Japan,
topologically very distant location from the Core cluster which is distributed
between the different jurisdictions in Europe. Service was already extensively
tested in the laboratory environment, so that its performance in presence of non-
ideal network conditions was already mapped. Also, its latency, when operated
within a single continent, had been proven to be satisfactory. We rented some
physical and some virtual servers from 5 different service providers based on
Tokyo and Nagano. There were also some non-formal testing objectives, like

Fig. 3. Message flow through the aggregation layers (AL → AS → AN → ATL → Core
and back). Horizontal axis represents the flow of time in seconds.

(1) finding set of service providers with least dependent resources, especially
ISP peering; (2) testing service quality provided by different sizes of clusters of
physical and virtual servers, finding cost effective combination; (3) testing effect
of different aggregation periods; (4) testing effect of other system parameters;
(5) providing data to draft the Service Level Agreements. Load was generated
remotely, measurements were performed at the Gateway host, so that client
application to gateway connection did not impact the measurements. Tests were
run for 24 hour periods, for at least 3 consecutive days. If possible then ISP-s
with worst quality of service were used (they were dropped in production).

Results: The main goal was to improve the service quality, i.e. provide minimal
and deterministic latency of the signing service to the end users; and also to find
cost effective setup to guarantee reasonable availability. The progress is presented
with the before and after response timing histograms in Fig. 4. The left graph
depicts the initial real-life signing response timing distribution. Note that there
are no failed requests because of the redundancy and automatic retry mechanism
on all aggregation layers. Response latency histogram after the synchronization
of the aggregation layers and other optimizations like tuning host network stack
and Linux kernel parameters is depicted at Fig. 4 (right). Here latency is mostly
dictated by the underlying network delays as RTT (round-trip delay) from AN to
ATL is approximately 270ms, other network delays are below few milliseconds.
Clock drift at all layers is less than 4ms and Core protocol voting time is 48ms.
Final optimizations and findings included:

– The lowest latency was achieved by the aggregation period of 200...400ms.
We started with 200ms and later reverted to 400ms for less data traffic.

Fig. 4. Real-life response time histograms before and after the optimizations. Vertical
axis is the number of samples, horizontal scale is the latency in seconds.

– In redundant clusters, virtual servers are reasonably good. Three virtual
servers cost less and provide better service than 2 dedicated physical servers.

– Virtualized servers can have choppy flow of time; it helps to keep local disk
IO minimal. For our case it was necessary to set up network logging.

– Although being easier to implement the TCP based network protocol had
some unwanted quirks, especially the “TCP slow start after idle” feature.

In practice, the synchronization involved setting up reasonably good configura-
tion of Internet-based NTP time synchronization and configuring optimal timing
offsets based on measured RTT between the aggregation layers at each Aggre-
gator site. Depending on availability requirements 2 or 3 Aggregation servers in
a cluster provided satisfactory results.

References

1. Bayer, D., Haber, S., Stornetta, W.-S.: Improving the efficiency and reliability of
digital timestamping. In: Sequences II: Methods in Communication, Security, and
Computer Sci., pp. 329–334. Springer, Heidelberg (1993)

2. Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using hash
functions with small output size. In: Boyd, C., Simpson, L. (Eds.): ACISP 2013,
LNCS 7959, pp. 235–250, 2013. Springer, Heidelberg (2013)

3. Buldas, A., Niitsoo, M.: Optimally tight security proofs for hash-then-publish time-
stamping. In: Steinfeld, R., Hawkes, P. (eds.): ACISP 2010. LNCS 6168, pp. 318–
335. Springer, Heidelberg (2010)

4. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee, P.J.
(Ed.): ASIACRYPT 2004. LNCS 3329, pp. 500–514. Springer, Heidelberg (2004)

5. Haber, S., Stornetta, W.-S.: How to time-stamp a digital document. Journal of
Cryptology 3(2), 99–111 (1991)

6. Merkle, R.C.: Protocols for public-key cryptosystems. In: Proceedings of the 1980
IEEE Symposium on Security and Privacy, pp. 122–134 (1980)

